首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8058篇
  免费   532篇
  国内免费   4篇
  2023年   18篇
  2022年   13篇
  2021年   150篇
  2020年   87篇
  2019年   119篇
  2018年   163篇
  2017年   157篇
  2016年   226篇
  2015年   429篇
  2014年   432篇
  2013年   515篇
  2012年   720篇
  2011年   628篇
  2010年   399篇
  2009年   368篇
  2008年   486篇
  2007年   508篇
  2006年   454篇
  2005年   393篇
  2004年   384篇
  2003年   325篇
  2002年   286篇
  2001年   249篇
  2000年   230篇
  1999年   165篇
  1998年   62篇
  1997年   54篇
  1996年   34篇
  1995年   34篇
  1994年   21篇
  1993年   21篇
  1992年   40篇
  1991年   48篇
  1990年   39篇
  1989年   46篇
  1988年   35篇
  1987年   25篇
  1986年   25篇
  1985年   31篇
  1984年   20篇
  1983年   17篇
  1981年   9篇
  1979年   11篇
  1978年   13篇
  1977年   10篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
  1970年   6篇
排序方式: 共有8594条查询结果,搜索用时 592 毫秒
61.
A crystal -endotoxin gene ofBacillus thuringiensis subsp.tenebrionis (B.t.t.) encoding a coleopteran insect-specific toxin was used to construct a chimeric gene which expressed the toxin in plant cells. Via anAgrobacterium tumefaciens binary vector system, the toxin gene was transferred into tomato cells. From leaf disks recombinant plants were regenerated. Hybridization experiments demonstrated that these plants synthesized toxin-specific mRNA of the expected size. Transgenic tomato plants with the chimericB.t.t. toxin gene contained a 74 kDa protein which cross-reacted with toxin antibodies. The expression caused a significant insecticidal activity of the transgenic tomato plants against Colorado potato beetle larvae.  相似文献   
62.
This study examined the temporal patterns of establishment, suppression, and release of major tree species in two old-growth Ohio forest remnants as a means to determine the past disturbance history of these forests. Increment cores were taken from a total of 154 trees from two well-drained, upland plots and two poorly-drained, bottomland plots in each of the two forested areas. Acer saccharum and Fagus grandifolia exhibited multiple episodes of suppression and release prior to becoming canopy trees, and could tolerate suppressions as long as 84 years. In contrast, Quercus macrocarpa, Q. muehlenbergii, Prunus serotina, and Acer saccharinum rerely exhibited any tolerance to suppression and appeared to have entered the canopy after single disturbances had opened large areas of canopy. There was clear synchrony in the temporal pattern of establishment and final release from suppression among trees from bottomland plots scattered throughout the stands, indicating that relatively large disturbances were important in these poorly-drained areas. In contrast, there was little synchrony among trees from well-drained upland plots, except in a single instance where selective cutting of Quercus trees opened the canopy. Thus, the canopy of upland site was likely subjected only to small disturbances resulting from the death of one or a few trees. At the whole of forest level, there was evidence of episodic recruitment of canopy trees in both forests. Establishment of Fraxinus spp. and Quercus spp. were particularly episodic, and few Fraxinus or Quercus trees alive today established during the last century. These data suggest that large disturbances have affected canopy dynamics of both upland and bottomland areas prior to 1900 and in bottomland forests through this century. In contrast, disturbances in upland areas during this century have been restricted to small, treefall-generated canopy gaps.  相似文献   
63.
Histone mRNA 3' end formation requires the presence of two cis-acting conserved sequence elements: a stem-loop structure upstream from the site of cleavage and a purine-rich region downstream from the site of cleavage called the histone downstream element (HDE). Possible interactions between these two elements and their respective binding factors were investigated by a series of deletions (1-7 nt) in the region between the two. The efficiency of processing decreased as the stem-loop and the HDE were moved closer together. In contrast with the documented ability of the U7 snRNP to direct cleavage at a fixed distance from the HDE in insertion mutants (Scharl & Steitz, 1994), all deletion substrates for which processing was observed were cleaved at or 1-nt upstream from the wild-type site. The reason for the inability of the system to cleave closer to the stem-loop remains unclear, but the removal of stem-loop binding protein(s) (SLBP) did not activate upstream cleavage events. Thus, although the processing machinery measures the distance between the cleavage site and the HDE of mammalian histone pre-mRNAs, there is a barrier limiting how far upstream cleavage can occur. These data allow a reevaluation of the sites of 3' end processing in known histone pre-mRNAs.  相似文献   
64.
65.
Fimbrial production by Porphyromonas gingivalis was inactivated by insertion-duplication mutagenesis, using the cloned gene for the P. gingivalis major fimbrial subunit protein, fimA. by several criteria, this insertion mutation rendered P. gingivalis unable to produce fimbrilin or an intact fimbrial structure. A nonfimbriated mutant, DPG3, hemagglutinated sheep erythrocytes normally and was unimpaired in the ability to coaggregate with Streptococcus gordonii G9B. The cell surface hydrophobicity of DPG3 was also unaffected by the loss of fimbriae. However, DPG3 was significantly less able to bind to saliva-coated hydroxyapatite than wild-type P. gingivalis 381. This suggested that P. gingivalis fimbriae are important for adherence of the organism to saliva-coated oral surfaces. Further, DPG3 was significantly less able to cause periodontal bone loss in a gnotobiotic rat model of periodontal disease. These observations are consistent with other data suggesting that P. gingivalis fimbriae play an important role in the pathogenesis of human periodontal disease.  相似文献   
66.
A molecular map has been constructed for the rice genome comprised of 726 markers (mainly restriction fragment length polymorphisms; RFLPs). The mapping population was derived from a backcross between cultivated rice, Oryza sativa, and its wild African relative, Oryza longistaminata. The very high level of polymorphism between these species, combined with the use of polymerase chain reaction-amplified cDNA libraries, contributed to mapping efficiency. A subset of the probes used in this study was previously used to construct an RFLP map derived from an inter subspecific cross, providing a basis for comparison of the two maps and of the relative mapping efficiencies in the two crosses. In addition to the previously described PstI genomic rice library, three cDNA libraries from rice (Oryza), oat (Avena) and barley (Hordeum) were used in this mapping project. Levels of polymorphism detected by each and the frequency of identifying heterologous sequences for use in rice mapping are discussed. Though strong reproductive barriers isolate O. sativa from O. longistaminata, the percentage of markers showing distorted segregation in this backcross population was not significantly different than that observed in an intraspecific F(2) population previously used for mapping. The map contains 1491 cM with an average interval size of 4.0 cM on the framework map, and 2.0 cM overall. A total of 238 markers from the previously described PstI genomic rice library, 250 markers from a cDNA library of rice (Oryza), 112 cDNA markers from oat (Avena), and 20 cDNA markers from a barley (Hordeum) library, two genomic clones from maize (Zea), 11 microsatellite markers, three telomere markers, eleven isozymes, 26 cloned genes, six RAPD, and 47 mutant phenotypes were used in this mapping project. Applications of a molecular map for plant improvement are discussed.  相似文献   
67.
M H Cho  S B Shears    W F Boss 《Plant physiology》1993,103(2):637-647
Carrot (Daucus carota L.) cells plasmolyzed within 30 s after adding sorbitol to increase the osmotic strength of the medium from 0.2 to 0.4 or 0.6 osmolal. However, there was no significant change in the polyphosphorylated inositol phospholipids or inositol phosphates or in inositol phospholipid metabolism within 30 s of imposing the hyperosmotic stress. Maximum changes in phosphatidylinositol 4-monophosphate (PIP) metabolism were detected at 5 min, at which time the cells appeared to adjust to the change in osmoticum. There was a 30% decrease in [3H]inositol-labeled PIP. The specific activity of enzymes involved in the metabolism of the inositol phospholipids also changed. The plasma membrane phosphatidylinositol (PI) kinase decreased 50% and PIP-phospholipase C (PIP-PLC) increased 60% compared with the control values after 5 min of hyperosmotic stress. The PIP-PLC activity recovered to control levels by 10 min; however, the PI kinase activity remained below the control value, suggesting that the cells had reached a new steady state with regard to PIP biosynthesis. If cells were pretreated with okadaic acid, the protein phosphatase 1 and 2A inhibitor, the differences in enzyme activity resulting from the hyperosmotic stress were no longer evident, suggesting that an okadaic acid-sensitive phosphatase was activated in response to hyperosmotic stress. Our work suggests that, in this system, PIP is not involved in the initial response to hyperosmotic stress but may be involved in the recovery phase.  相似文献   
68.
We have used an antibody against the functional homolog of the cdc2 kinase of maize to localize the p34cdc2 protein within dividing cells of the root apex and the stomatal complex of leaf epidermis. The microtubule cytoskeletal structure of plant cells was visualized concomitantly with a monoclonal antibody specific for [alpha]-tubulin. We found that the cdc2 protein is localized mainly to the nucleus in plant cells at interphase and early prophase. This finding contrasts markedly with the predominantly cytoplasmic staining obtained using antibody to the PSTAIRE motif, which is common to cdc2 and numerous cdc2-like proteins. In a subpopulation of root cells at early prophase, the p34cdc2 protein is also distributed in a band bisecting the nucleus. Double labeling with the maize p34cdc2Zm antibody and tubulin antibody revealed that this band colocalizes with the preprophase band (PPB) of microtubules, which predicts the future division site. Root cells in which microtubules had been disrupted with oryzalin did not contain this band of p34cdc2 protein, suggesting that formation of the microtubule PPB is necessary for localization of the p34cdc2 kinase to the plane of the PPB. The p34cdc2 protein is also localized to the nucleus and PPB in cells that give rise to the stomatal complex, including those cells preparing for the highly asymmetrical divisions that produce subsidiary cells. Association of the p34cdc2 protein with the PPB suggests that the cdc2 kinase has a role in establishing the division site of plant cells and, therefore, a role in plant morphogenesis.  相似文献   
69.
The coral skeleton harbours a diverse community of bacteria and microeukaryotes exposed to light, O2 and pH gradients, but how such physicochemical gradients affect the coral skeleton microbiome remains unclear. In this study, we employed chemical imaging of O2 and pH, hyperspectral reflectance imaging and spatially resolved taxonomic and inferred functional microbiome characterization to explore links between the skeleton microenvironment and microbiome in the reef-building corals Porites lutea and Paragoniastrea benhami. The physicochemical environment was more stable in the deep skeleton, and the diversity and evenness of the bacterial community increased with skeletal depth, suggesting that the microbiome was stratified along the physicochemical gradients. The bulk of the coral skeleton was in a low O2 habitat, whereas pH varied from pH 6–9 with depth. Physicochemical gradients of O2 and pH of the coral skeleton explained the β-diversity of the bacterial communities, and skeletal layers that showed O2 peaks had a higher relative abundance of endolithic algae, reflecting a link between the abiotic environment and the microbiome composition. Our study links the physicochemical, microbial and functional landscapes of the coral skeleton and provides new insights into the involvement of skeletal microbes in the coral holobiont metabolism.  相似文献   
70.
Summary Intracellular localization of bryonolic acid, an antiallergic pentacyclic triterpene, in cultured cells of Luffa cylindrica was investigated with reference to the sites of its biosynthesis and accumulation. The results of cell fractionation showed that bryonolic acid was mostly located in the cell wall fraction. The addition of FC-43 emulsion to the culture medium was found to cause the release of bryonolic acid from the cell wall into the medium without affecting cell growth and bryonolic acid production. Under this culture condition, 14C-labeled sodium acetate administered to the cells was rapidly incorporated into bryonolic acid which was then excreted into the medium within 10 min after administration. Electron microscopic observations suggested that spherical vesicles (ca 0.1 m in diameter) derived from the rough endoplasmic reticulum may be associated with the biosynthesis and excretion of this compound into the cell wall. Furthermore, the activity of 2,3-oxidosqualene cyclase, a key enzyme involved in the biosynthesis of bryonolic acid, was detected in the microsomal fraction containing the endoplasmic reticulum.Abbreviations BA bryonolic acid - ER endoplasmic reticulum - LS Linsmaier-Skoog - NAA 1-naphthaleneacetic acid - MES 2-(N-morpholino)ethanesulfonic acid - PVPP polyvinyl polypyrrolidone  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号